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Linear stability characterization of thin 
viscoelastic liquid films flowing down a plate 

moving in a vertical direction 
 

Hung Ming Sung, Zong-Yi Lee, Chung-Ting Hsu 

Abstract 

This project presents a stability analysis of thin viscoelastic liquid films flowing down a 

plate moving in a vertical direction. The long-wave perturbation method is employed to derive 

the generalized kinematic equations for a free film interface. The current thin liquid film 

stability analysis provides a valuable input to investigations into the influence of the style of 

motion of the vertical plate on the stability behavior of the thin film flow.  
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沿垂直方向移動之直立平板表面流下的黏彈

性流體薄膜流的線性穩定性分析 

宋鴻明、李宗乙、徐仲亭 

摘 要 

本文針對黏彈性流體薄膜流，探討沿垂直方向移動的直立平板表面流下的薄膜流之

線性液動穩定性問題。首先使用長波微擾法推導薄膜的自由面方程式，在探討薄膜流場

的穩定性問題上，主要分析平板的移動效應對系統穩定性的影響。 

 

關鍵詞：黏彈性流體、薄膜流、長波微擾法。 
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1. Introduction 

The stability characterization of film 

flows traveling down along a vertical or an 

inclined plate is of great importance to the 

quality control of many industrial products. 

Thus, the research effort made toward 

improvement on this matter has been 

emerged as a subject of great interest to 

numerous worldwide researchers in past 

decades. Typical application examples can be 

found across different industrial sectors 

including mechanical, chemical and nuclear 

engineering.  It is well known that the 

stability controls are generally required in 

precision finishing processes of coating, laser 

cutting, and casting.  Since macroscopic 

instability can cause disastrous conditions to 

film flows and thus very detrimental to the 

needed quality of final products, it is highly 

desirable to develop suitable working 

conditions for homogeneous film growth to 

adapt to various flow configurations and 

associated time-dependent properties. 

Detailed reviews on linear stability 

theories for various film flows has formally 

presented by Lin [1] and Chandrasekhar [2].  

The Landau equation was re-derived in 1956 

by Stuart [3] using the disturbed energy 

balance equation and Reynolds stresses. 

Benjamin [4] and Yih [5] formulated the 

perturbed wave equation for free surface 

flows. The stability behaviors of flows 

having long disturbed wave were arefully 

studied in this paper and some significant 

observations on film flows over an inclined 

plane are obtained. These observations 

include (1) the flow that is disturbed by a 

longer wave is less stable than that of the 

flow disturbed by a shorter wave; (2) the film 

flow becomes less stable as the inclined 

angle increases; (3) the film flow traveling 

down along a vertical plate becomes unstable 

as the critical Reynolds number becomes 

nearly zero; (4) the film flow becomes 

somehow stabilized as the surface tension of 

the film increases; (5) velocity of the 

unstable long disturbed wave is 

approximately twice of the wave velocity on 

the free surface. The effect of surface tension 

was found by many researchers [6-8] as one 

of the necessary conditions that lead to the 

solution of supercritical stability in analyzing 

this type of problems. The effect of surface 

tension on flow stability was considered 

significant by Lin [6], Nakaya [7], and 

Krishna et al. [8]. Renardy et al. [9] and Tsai 

et al. [10] presented the work of both linear 

and nonlinear stability analysis for a film 

flow traveling down along an inclined or a 
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vertical plate. Detailed flow analysis was 

found of great importance in the 

development of stability theory for 

characterizing the behaviors of various film 

flows. Andersson et al. [11] studied the 

gravity-driven flow of a viscoelastic film 

flow traveling down along a vertical wall. 

The derived analytical expression of film 

thickness reveals that the film thickness of a 

viscoelastic film can develop more rapidly 

than that of the Newtonian film in 

downstream asymptotic states. Walters [12] 

analyzed the motion behavior of a 

viscoelastic film flow that is confined in 

between two coaxial cylinders. Cheng et al. 

[13] studied the stability of thin viscoelastic 

film flow traveling down along a vertical 

wall. The results of their studies indicate that 

the viscoelastic parameter indeed plays a 

significant role in destabilizing the film flow. 

After careful literature review on the 

papers of thin viscoelastic film flows 

raveling down along a vertical plate, it was 

found that the stability of thin viscoelastic 

film flows moving along vertical plates 

appeared to be very important in various 

coating, painting, surface drawing and 

lubrication processes.  This type of stability 

problems has not yet been fully explored so 

far in the literature. The types of stability 

problems are indeed of great importance for 

many industrial applications. In this paper, 

the finite-amplitude stability of a thin 

viscoelastic film flow traveling down along a 

vertical quiescent, up-moving, and 

down-moving plate is thoroughly 

investigated. The influence of the plate 

moving styles on the equilibrium finite 

amplitude is studied and characterized. 

Several numerical examples are presented to 

verify the computational results and also to 

illustrate the effectiveness of the proposed 

modeling approach. 

2.Generalized Kinematic Equation 

Fig.1 shows the configuration of a 

thin viscoelastic film flow traveling down 

along a vertically moving plate. The fluid 

used for study is an incompressible 

viscoelastic prototype that is designated as 

liquid B ′′  by Beard and Walters[14]. The 

Walters’ liquid B ′′  represents an 

approximation to the first order in elasticity, 

i.e. for short or rapidly fading memory fluids. 

All associated physical properties and the 

rate of film flow are assumed to be constant 

(i.e. time-invariant). Based on the given 

assumptions, the velocity fields of the film 

flow can be represented by 
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where ρ is the density of the film flow. 
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where  and  are velocity components 

in  and  directions, respectively.  p 

is the flow pressure, 

*u *v
*x *y

ρ  is the film density, 

and µ  is the dynamic viscosity.  The 

boundary conditions for the film flow system 

at the plate surface of  can be 

expressed as 

0* =y

    (7) ** Uu =
    (8) 0* =v

where U  is the moving velocity of the 

vertical plate.  The boundary conditions for 

the film flow at free surface of  are 

derived based on the results given by 

Edwards et al. [15].  The shear stress for 

film flow at free surface is given as   
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The normal stress for film flow at free 

surface is given as 
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The kinematic condition that the flow 

velocity normal to a free surface is naught 

can be given as 
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where  is the ambient pressure,  is 

the surface tension,  is the local film 

thickness. The variable associated with a 

superscript “ * “ stands for a dimensional 

quantity. By introducing the stream function 

, the dimensional velocity components 

can now be expressed as  
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In order to minimize the flow variables 

and to simplify the analysis procedure, it is 

customary to define dimensionless variables 

as 
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The moving velocity of the vertical 

plate can then be expressed as 
    (14) *

0
* uZU =

where Z is a specific constant ratio of the 

plate velocity to the free stream velocity. 

Since the modes of long-wavelength 

that gives the smallest wave number are most 

likely to induce flow instability for the film 

flow [4,5], the dimensionless wave number 

of the long-wavelength mode, α , is then 

chosen as the perturbation parameter for 

variable expansion.  By so doing the stream 

function and flow pressure can be perturbed 

and represented as 
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In order to characterize more precisely 

the effect of vertical plate motion on the 

stability behaviors of a down-traveling thin 

film flow, a detailed numerical investigation 

on flow stability is carried out.  Three 

different kinds of plate-moving styles, i.e. 

stationary, up-moving, and down-moving 

movements, for various speeds are used to 

characterize the behaviors of stable thin film 

flows traveling down along the moving plate.  

The flow rate of the film flow is assumed to 

be constant. The variations of local film 

thickness and the flow velocity at free 

surface in equilibrium are defined as 
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where 
*
0u  is the velocity at free surface for 

a static plate in equilibrium state, and 
*
0h  is 

the film thickness in equilibrium state when 

the plate is static. 

3. Stability Analysis 

The dimensionless film thickness when 

expressed in perturbed state can be given as 

   ),(1),( txtxh η+=  (25) 
where η  is a perturbed quantity of 

stationary film thickness. By inserting 

equation (25) into equation (17) and 

collecting all terms up to the order of , 

the evolution equation of 
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where all the values of A, B, C, D, E and 

their derivatives are evaluated at the 

dimensionless film height of the film h=1. 

To characterize the linear behaviors of 

the film flow, the nonlinear terms in equation 

(26) are assumed insignificant and can be 

neglected to obtain the linearized equation  
   0=+++ xxxxxxxt CBA ηηηη  (27) 
The normal mode analysis [16] can be 

performed by assuming that 
   ..)](exp[ ccdtxia +−=η  (28) 
where  is the perturbed wave amplitude, 

and c.c. is the associated complex conjugate 

counterpart. The complex wave celerity, d, 

can be expressed as 

a

   )( CBiAiddd ir −+=+=  (29) 
where  is the linear wave speed, and  

is the linear growth rate of the wave 
rd id
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amplitudes.  The flow is linearly unstable 

supercritical if , and is linearly stable 

sub-critical if .  

0>id
0<id

4. Numerical Illustrations and 
Discussions 

A numerical example is presented here 

to illustrate the effectiveness of the proposed 

modeling approach for characterizing the 

thin viscoelastic film flow traveling down 

along a vertically moving plate. In order to 

reliably verify the results of theoretic 

derivation, a finite amplitude perturbation 

apparatus is used to numerically generate the 

needed perturbation parameters for linear 

stability analyses.  It is obvious from the 

nonlinear kinematic equation that the 

stability of a thin-film flow is closely related 

and can be characterized by several flow 

variables including Reynolds number, Re, 

velocity ratio of the plate to free stream, Z, 

viscoelastic parameter, k, and dimensionless 

perturbation wave number, α . Some 

important features appeared in modeling 

results are carefully extracted and used to 

compare with some conclusive results given 

in the literature.   

Fig. 1 shows the schematic diagram of a 

thin viscoelastic film flow traveling down 

along a vertically down-moving upright plate.  

Physical parameters that are selected for 

study include (1) Reynolds numbers ranging 

from 0 to 15, (2) the dimensionless 

perturbation wave numbers ranging from 0 to 

0.12, (3) the value of viscoelastic parameter 

is given as 0.02[13], and (4) the velocity 

ratios Z for use in this study include –0.42, 

-0.32, -0.18, 0, 0.23, 0.51, 0.85. A constant 

dimensionless surface tension value is given 

for computation to enable the study of film 

flow stability behaviors for different plate- 

moving conditions of moving-up (Z = -0.42, 

-0.32, -0.18), stationary (Z = 0), and 

moving-down (Z = 0.23, 0.51, 0.85). In other 

words, S is selected as 6173.5 [13].  This 

value is selected here for study mainly for 

comparing the final result with data given in 

the literature.  It is found that the results 

obtained by using the proposed method for 

the thin viscoelastic film flow traveling down 

along a stationary vertical plate (i.e. Z = 0) 

agree well with those data given by Cheng et 

al. [13].  

The linear neutral stability curve is 

obtained by setting 0=id  in equation (29). 

Theα-Re plane is divided into two different 

characteristic regions by the neutral stability 

curve.  One is the linearly stable region 

where small disturbances decay with time 

and the other is the linearly unstable region 
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where small perturbations grow as time 

increases. The linear neutral stability curves 

of a thin viscoelastic film flow traveling 

down along a vertical plate for three different 

plate-moving conditions are computed. The 

results are presented in Fig. 2(a) and 2(b).  

Fig. 2(a) shows the linear stability curves of 

the film flow traveling down along a 

down-moving plate for Z=0, 0.23, 0.51, 0.85. 

The results indicate that the linear stable 

region  is enlarged as the velocity 

of the down-moving plate increases. On the 

other hand, the linear stability curves of the 

film flow traveling down along a up-moving 

plate for Z=0, -0.18, -0.32, -0.42 are 

presented in Fig. 2(b).  The results indicate 

that the linear stable region shrinks as the 

velocity of the up-moving plate increases.    

It becomes quite obvious from the numerical 

experiments given in Fig. 2(a) that the 

down-moving motion of the vertical plate 

tends to enhance the stability of the 

down-traveling film flow on the plate.  It is 

also true by observations from Fig. 2(b) that 

the up-moving motion of the vertical plate 

tends to destabilize the down-traveling film 

flow on the plate.  

)0( <id

The temporal amplitude growth rate of 

the disturbed wave is also computed by using 

equation (29).  The results are presented in 

Fig. 3 and 4.  Fig. 3(a) shows the temporal 

amplitude growth rates of the disturbed wave 

for various perturbed wave numbers, α’s 

and at different down-moving plate velocity 

ratios of Z=0, 0.23, 0.51, 0.85 at Reynolds 

number Re=10.  The temporal amplitude 

growth rates of the disturbed wave for 

various Reynolds numbers, Re, with different 

down-moving plate velocity ratios of Z=0, 

0.23, 0.51, 0.85 for a perturbed wave number 

of α=0.06 are given in Fig. 3(b). It is found 

that the amplitude growth rate of the 

disturbed wave, , decreases as the 

down-moving plate velocity increases. The 

decreasing rate of  tends to slow down as 

the down-moving plate velocity becomes 

larger. The results indicate that the 

down-moving motion of the vertical plate 

tends to enhance the stability of the 

down-traveling film flow on the plate. It is 

also obvious from Fig. 3(a) and 3(b) that the 

increased enhancement on flow stability is 

more distinct for a smaller down-moving 

plate velocity than that of the larger 

down-moving plate velocity.  Fig. 4(a) 

shows the temporal amplitude growth rates 

of the disturbed wave for various perturbed 

wave numbers, α ’s and different 

up-moving plate velocity ratios of Z=0, -0.18, 

-0.32, -0.42 at Reynolds number Re=10.  

id

id
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The temporal amplitude growth rates of the 

disturbed wave for various Reynolds 

numbers, Re, with different up-moving plate 

velocity ratios of Z=0, -0.18, -0.32, -0.42 for 

a perturbed wave number of α=0.06 are 

given in Fig. 4(b). It is found that the 

amplitude growth rate of the disturbed wave, 

, increases as the up-moving plate velocity 

increases. The increasing rate of  tends to 

increase more substantially as the up-moving 

plate velocity increases. The results indicate 

that the up-moving motion of the vertical 

plate tends to destabilize the down-traveling 

film flow on the plate. It is also obvious from 

Fig. 4(a) and 4(b) that the destabilization 

effect of the down-traveling flow on a 

up-moving plate is more distinct for a larger 

up-moving plate velocity than that of the 

smaller up-moving plate velocity.  

id

id

5. Conclusion 

The stability of a thin viscoelastic film 

flow traveling down along a vertical plate 

under three different plate moving conditions 

is investigated by using the method of 

long-wave perturbation. The generalized 

nonlinear kinematic equations of the film 

flow at the interface of free surface is derived 

and numerically estimated to characterize the 

behaviors of flow stability.  Based on the 

results of numerical modeling, several 

conclusions can be drawn as follows:  

(1) The neutral stability curve obtained 

by using linear stability analysis separates 

the α -Re plane into two different 

characteristic regions. It is interesting to note 

that as the down-moving plate velocity 

increases, the linear stable region also 

increases, however, the temporal film growth 

rate of the perturbed wave decreases. In other 

words, the film flow becomes more stable as 

the down-moving plate velocity increases.  

(2) When the up-moving plate velocity 

increases, the linear stable region decreases, 

however, the temporal film growth rate of the 

perturbed wave increases.  In other words, 

the film flow gradually becomes unstable 

when the up-moving plate velocity increases.  
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Fig. 1 Schematic diagram of a thin viscoelastic    

film flow traveling down along a vertically 

moving upright plate 
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Fig. 2(a) Neutral linear stability curves of a   

viscoelastic flow for different down-moving plate 

velocity ratios, Z’s 
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Fig. 2(b) Neutral linear stability curves of a 

viscoelastic flow for different up-moving plate 

velocity ratios, Z’s 
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 Fig. 3(a) Linear amplitude growth rate of 

disturbed waves in a viscoelastic flow for 

different down-moving plate velocity ratios, Z’ s, 

at Re=10 
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Fig. 3(b) Linear amplitude growth rate of 

disturbed waves in a viscoelastic flow for 

different down-moving plate velocity ratios, Z’ s, 

at 06.0=α  
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Fig. 4(a) Linear amplitude growth rate of 

disturbed waves in a viscoelastic flow for 

different up-moving plate velocity ratios, Z’ s, at 

Re=10 
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Fig. 4(b) Linear amplitude growth rate of 

disturbed waves in a viscoelastic flow for various 

up-moving plate velocity ratios, Z’ s, at 06.0=α  
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